
Cluster Computing manuscript No.
(will be inserted by the editor)

A Cost-Benefit Analysis of Using Cloud Computing to
Extend the Capacity of Clusters

Marcos Dias de Assunção · Alexandre di Costanzo · Rajkumar Buyya

Received: 06/11/2009 / Accepted:

Abstract In this paper, we investigate the benefits
that organisations can reap by using “Cloud Comput-
ing” providers to augment the computing capacity of
their local infrastructure. We evaluate the cost of seven
scheduling strategies used by an organisation that op-
erates a cluster managed by virtual machine technology
and seeks to utilise resources from a remote Infrastruc-
ture as a Service (IaaS) provider to reduce the response
time of its user requests. Requests for virtual machines
are submitted to the organisation’s cluster, but addi-
tional virtual machines are instantiated in the remote
provider and added to the local cluster when there are
insufficient resources to serve the users’ requests. Näıve
scheduling strategies can have a great impact on the
amount paid by the organisation for using the remote
resources, potentially increasing the overall cost with
the use of IaaS. Therefore, in this work we investi-
gate seven scheduling strategies that consider the use of
resources from the “Cloud”, to understand how these
strategies achieve a balance between performance and
usage cost, and how much they improve the requests’
response times.

This work is partially supported by research grants from the

Australian Research Council (ARC) and Australian Department
of Innovation, Industry, Science and Research (DIISR). Marcos’

PhD research was partially supported by National ICT Australia.

Marcos Dias de Assunção
INRIA RESO/LIP
École Normale Supérieure de Lyon

46, allée d’Italie - 69364 Lyon Cedex 07 - France
E-mail: marcos.dias.de.assuncao@ens-lyon.fr

Alexandre di Costanzo and Rajkumar Buyya

The University of Melbourne

Melbourne, VIC, Australia
E-mail: {adc,raj}@csse.unimelb.edu.au

Keywords Cloud computing · load sharing · job
scheduling · backfilling

1 Introduction

Managing and supplying computational resources to
user applications is one of the main challenges for the
high performance computing community. To manage
resources existing solutions rely on a job abstraction for
resource control, where users submit their applications
as batch jobs to a resource management system respon-
sible for job scheduling and resource allocation. This us-
age model has served the requirements of a large num-
ber of users and the execution of numerous scientific ap-
plications. However, this usage model requires the user
to know very well the environment on which the ap-
plication will execute. In addition, users can sometimes
require administrative privileges over the resources to
customise the execution environment by updating li-
braries and software required, which is not always pos-
sible using the job model.

The maturity and increasing availability of virtual
machine technologies has enabled another form of re-
source control based on the abstraction of containers.
A virtual machine can be leased and used as a con-
tainer for deploying applications [28]. Under this sce-
nario, users lease a number of virtual machines with the
operating system of their choice; these virtual machines
are further customised to provide the software stack re-
quired to execute user applications. This form of re-
source control has allowed leasing abstractions that en-
able a number of usage models, including that of batch
job scheduling [33].

The creation of customised virtual machine environ-
ments atop a physical infrastructure has enabled an-

2

other model recently known as “Cloud Computing” [2,
38]. Based on the economies of scale and recent Web and
network technologies, commercial resource providers,
such as Amazon Inc., aim to offer resources to users in
a pay-as-you-go manner. These Cloud providers, also
known as Infrastructure as a Service (IaaS) providers,
allow users to set up and customise execution envi-
ronments according to their application needs. Previ-
ous work has demonstrated how Cloud providers can
be used to supply resources to scientific communities.
Deelman et al. [9] demonstrated the cost of using Cloud
providers to supply the needs for resources of data in-
tensive applications. Palankar et al. [27] have shown
that Grid computing users can benefit from mixing
Cloud and Grid infrastructure by performing costly data
operations on the Grid resources while utilising the data
availability provided by the Clouds.

In this work, we investigate whether an organisation
operating its local cluster can benefit from using Cloud
providers to improve the performance of its users’ re-
quests. We evaluate seven scheduling strategies suitable
for a local cluster that is managed by virtual machine
based technology to improve its Service Level Agree-
ments (SLAs) with users. These strategies aim to utilise
remote resources from the Cloud to augment the capac-
ity of the local cluster. However, as the use of Cloud
resources incurs a cost, the problem is to find the price
at which this performance improvement is achieved. We
aim to explore the trade-off between performance im-
provement and cost.

We have implemented a system that relies on virtu-
alisation technology for enabling users to request virtual
machines from both the local cluster and the Cloud to
run applications. In this work, we evaluate via simula-
tion seven strategies for improving scheduling perfor-
mance through the use of a Cloud provider. In sum-
mary, the contributions of this work are to:

– Describe a system that enables an organisation to
augment its computing infrastructure by allocating
resources from a Cloud provider.

– Provide various scheduling strategies that aim to
minimise the cost of utilising resources from the
Cloud provider.

– Evaluate the proposed strategies, considering differ-
ent performance metrics; namely average weighted
response time, job slowdown, number of deadline
violations, number of jobs rejected, and the money
spent for using the Cloud.

The rest of this paper is organised as follows. In Sec-
tion 2 we provide the background on virtual machines,
Cloud computing, and scheduling. Then, we present the
seven scheduling strategies for redirecting requests from

the cluster to the Cloud in Section 3. Section 4 de-
scribes the system design. Next, Section 5 shows the
considered experimental scenario and reports the per-
formance evaluation of the investigated strategies. Re-
lated work is discussed in Section 6 whereas conclusions
are presented in Section 7.

2 Background and Context

This work considers the case where an organisation
manages a local cluster of computers through virtual
machine technology to supply its users with resources
required by their applications. The scenario, depicted in
Figure 1, can also represent a centre that provides com-
puting resources to scientific applications or a commer-
cial organisation that provisions resources to its busi-
ness applications. The organisation wants to provision
resources for its user applications in a way that guar-
antees acceptable response time.

The resources of the local cluster are managed by
a Virtual Infrastructure Engine (VIE) such as Open
Nebula [14] and Eucalyptus [26]. The VIE can start,
pause, resume, and stop Virtual Machines (VMs) on the
physical resources offered by the cluster. The scheduling
decisions at the cluster are performed by the Scheduler,
which leases the site’s virtual machines to the users.
The scheduler also manages the deployment of VMs on
a Cloud Provider according to provisioning strategies,
which are detailed in the next section.

2.1 Virtualisation Technologies

The increasing availability of VM technologies has en-
abled the creation of customised environments on top of
physical infrastructures. The use of VMs in distributed
systems brings several benefits such as: (i) server con-
solidation, allowing workloads of several under-utilised
servers to be placed in fewer machines; (ii) the abil-
ity to create VMs to run legacy code without interfer-
ing in other applications’ APIs; (iii) improved security
through the creation of sandboxes for running applica-
tions with questionable reliability; (iv) dynamic provi-
sion of VMs to services, allowing resources to be allo-
cated to applications on the fly; and (v) performance
isolation, thus allowing a provider to offer some levels of
guarantees and better quality of service to customers’
applications.

Existing systems based on virtual machines can man-
age a cluster of computers by enabling users to create
virtual workspaces [21] or virtual clusters [14,6,15] atop
the actual physical infrastructure. These systems can

3

Cloud Provider

Physical Resources

Organisation's
Local Cluster

User

Cloud
APIs

Virtual
Infrastructure

EngineScheduler

Schedule or redirect requests
according to the strategies

Requests virtual
machines

Fig. 1 The resource provisioning scenario.

bind resources to virtual clusters or workspaces accord-
ing to the demands of user applications. They also pro-
vide an interface through which the user can allocate
virtual machines and configure them with the operating
system and software of choice. These resource managers
allow the user to create customised virtual clusters us-
ing shares of the physical machines available at the site.

Virtualisation technology minimises some security
concerns inherent to the sharing of resources among
multiple computing sites. Therefore, we utilise virtual-
isation software in our system design, described in Sec-
tion 4, because existing cluster resource managers rely-
ing on virtual machines can provide the building blocks,
such as availability information, required for the cre-
ation of virtual execution environments. The creation of
execution environments comprising multiple computing
sites is our long-term goal. In addition, relying on vir-
tual machines eases deploying execution environments
on multiple computing sites as the user application can
have better control over software installed on the re-
sources allocated from the sites without compromising
the operation of the hosts’ operating systems.

2.2 Infrastructure as a Service

Virtualisation technologies have also facilitated the re-
alisation of new models such as as Cloud Computing or
IaaS. The main idea is to supply users with on-demand
access to computing or storage resources and charge fees
for their usage. In these models, users pay only for the
resources they utilise. A key provider of this type of on-
demand infrastructure is Amazon Inc. with its Elastic
Compute Cloud (EC2) [1]. EC2 allows users to deploy
VMs on Amazon’s infrastructure, which is composed
of several data centres located around the world. To
use Amazon’s infrastructure, users deploy instances of

pre-submitted VM images or upload their own VM im-
ages to EC2. The EC2 service utilises the Amazon Sim-
ple Storage Service (S3), which aims at providing users
with a globally accessible storage system. S3 stores the
users’ VM images and, as EC2, applies fees based on
the size of the data and the storage time.

2.3 Scheduling and Redirection Strategies

The strategies investigated in this work define how the
scheduler performs the scheduling of leases and when
it borrows resources from the Cloud. The scheduler is
divided into two sub-scheduler modules, one managing
the scheduling of requests at the local cluster, hereafter
also termed the Site Scheduler, and another managing
the scheduling on the Cloud resources, termed as the
Cloud scheduler. We term a strategy or algorithm used
to schedule the leases as a scheduling strategy, and the
algorithm that defines when the scheduler borrows re-
sources from the Cloud and which requests are redi-
rected to the Cloud resources as a redirection strategy.
A combination of scheduling and redirection strategies
is a strategy set. As discussed later in Section 3, a redi-
rection strategy can be invoked at different times (e.g.
a job arrival or completion) in different strategy sets.

2.4 Types of User Requests

In addition to the type of virtual machine required and
configuration details, a request r is a tuple containing
at least < n, rt, d >, where n specifies the number of
virtual machines required; rt is the ready time, before
which the request is not ready for execution; and d is
the deadline for request completion. These parameters
are sufficient to specify a wide range of virtual machine

4

requests. As demonstrated latter in Section 5, by mak-
ing rt larger than the submission time, the user can
specify deadline constrained requests that require ad-
vance reservation of virtual machines.

The users of the infrastructure run different appli-
cations with different computing requirements. Some
applications need resources at particular times to meet
application deadlines, whereas other applications are
not strict about the time when they are given resources
to execute as long as they are granted the resources
required. The first category of applications is termed
as deadline-constrained whereas the second category is
termed as best-effort.

For the purposes of this work, users are to be ser-
viced by virtual machines hosted by an individual com-
puting site; thus the same user request cannot receive
resources from both the Cloud provider and the organ-
isation’s cluster. Applications that rely heavily on mes-
sage passing interfaces are generally sensitive to net-
work delays and, despite advances in virtualisation tech-
nology [36], may not benefit heavily from using resources
from multiple computing sites. In practice, the execu-
tion of these applications is generally confined to an
individual computer cluster.

We will relax this assumption in future work as
applications may present different communication de-
mands. Some applications are composed of tasks that
consist of multiple executions of the same program with
different input parameters. These applications are often
called bag-of-tasks and the tasks generally do not re-
quire communication between them; which makes these
applications good candidates for utilising resources from
multiple sites.

3 Evaluated Strategy Sets

As described in Section 2, a strategy set consists of
strategies for scheduling requests at the site and the
Cloud, and a redirection strategy that specifies which
requests are redirected to the Cloud.

As scheduling strategies we use conservative [25],
aggressive [22], and selective backfilling [34]. With con-
servative backfilling, each request is scheduled (i.e. it
is granted a reservation) when it arrives in the system,
and requests are allowed to jump ahead in the queue if
they do not delay the execution of other requests. In ag-
gressive backfilling, only the request at the head of the
waiting queue – called the pivot – is granted a reserva-
tion. Other requests are allowed to move ahead in the
queue if they do not delay the pivot. Selective back-
filling grants reservations to requests that have waited
long enough in the queue. Under selective backfilling

a request is granted a reservation if its expected slow-
down exceeds a threshold. The expected slowdown of
a request r is also called eXpansion Factor (XFactor)
and is given by Equation 1.

XFactor = (wait time+ run time)/run time (1)

In fact, we use the Selective-Differential-Adaptive
scheme proposed by Srinivasan et al. [34], which lets
the XFactor threshold be the average slowdown of pre-
viously completed requests.

The following strategy sets are used for scheduling
requests that arrive at the organisation’s cluster:

Näıve: both local Site and Cloud schedulers use
conservative backfilling to schedule the requests. The
redirection algorithm is executed at the arrival of each
job at the site. If the site scheduler cannot start a
request immediately, the redirection algorithm checks
whether the request can be started immediately using
Cloud resources. If the request can start on the Cloud
resources, then it is redirected to the Cloud, otherwise
it is placed in the site’s waiting queue.

Shortest Queue: jobs at the site’s cluster are sched-
uled in a First-Come-First-Served (FCFS) manner with
aggressive backfilling [22]. The redirection algorithm ex-
ecutes as each job arrives or completes, and computes
the ratio of virtual machines required by requests cur-
rently waiting in the queue to the number of processors
available, similar to the work of England and Weissman
[12]. If the Cloud’s ratio is smaller than the cluster’s,
the redirection algorithm iterates the list of waiting re-
quests and redirects requests until both ratios are sim-
ilar.

Weighted Queue: this strategy is an extension of
the Shortest Queue strategy. As each job arrives or com-
pletes, the scheduler computes the number of virtual
machines required by waiting requests on the cluster
and how many virtual machines are in execution on the
Cloud. The site scheduler then computes the number of
VMs that can be started on the Cloud, num vms, as the
minimum between the number of VMs demanded by
the site’s requests and the Cloud’s VM limit, and redi-
rects requests to the Cloud until num vms is reached.

Selective: the local site uses the selective back-
filling scheme described earlier. As each job arrives or
completes, the scheduler checks which requests can be
started, then starts them. Using the same approach
based on queue ratios used in the Shortest Queue strat-
egy, the scheduler then computes the ratios for the clus-
ter and the Cloud. If the ratios are different, the algo-
rithm iterates the list of waiting requests and checks
their XFactors. For each waiting request, if the expan-
sion factor exceeds the threshold, the algorithm checks

5

the potential start time for the request at both the
Cloud and the site. The algorithm finally makes a reser-
vation at the place that provides the earliest start time.

We also investigate strategies to schedule deadline
constrained requests using resources from the site and
the Cloud provider. The additional deadline-aware strat-
egy sets are:

Conservative: both local site and Cloud schedule
requests using conservative backfilling. As each request
arrives, the scheduler checks if the site can meet the
request’s deadline. If the deadline cannot be met, the
scheduler checks the availability on the Cloud. If the
Cloud can meet the request’s deadline, then the request
is scheduled on the Cloud resources. If the request dead-
line cannot be met, the scheduler schedules the request
on the local site if it provides a better start time than
the Cloud. Otherwise, the request is redirected to the
Cloud.

Aggressive: both local site and Cloud use aggres-
sive backfilling to schedule requests. Similarly to the
work of Singh et al. [32], as each request arrives the
scheduler builds a tentative schedule for currently wait-
ing requests. Using aggressive backfilling for building
the tentative schedule, the scheduler sorts the requests
applying an Earliest Deadline First scheme and checks
whether the acceptance of the arriving request would
break any request deadline. If there are no potential
deadline violations, the request is scheduled locally; oth-
erwise, a tentative schedule is built for Cloud resources.
If the request does not break deadlines of requests sched-
uled to use the Cloud, the request is served with re-
sources from the Cloud provider. If the request dead-
line cannot be met, the scheduler schedules the request
using the local site’s resources if they provide a bet-
ter start time than the Cloud. Otherwise the request is
served by resources from the Cloud.

Conservative with Reservation Support: both
local site and Cloud schedule requests using conserva-
tive backfilling with support for advance reservation of
resources. As each request arrives, the scheduler checks
whether it is a best-effort or reservation request. In the
first case, the request is placed in the local site. Other-
wise, for an advance reservation request the scheduler
first checks if the site can provide the resources dur-
ing the required time-frame. If there are not resources
available during the requested time-frame, the sched-
uler checks the resource availability on the Cloud. The
request is then scheduled on the Cloud if it can pro-
vide the resources required; otherwise the reservation
request is rejected.

Although as of writting of this paper some Cloud
providers do not support advance reservation, that does
not impact our system because reservations are man-

aged by an entity (i.e. Gateway) that uses the Cloud
API to start and stop virtual machines when reserva-
tions commence or finish. The assumption of this work
is that the Cloud will provide the resources required
when reservations are enforced.

4 System Design

In this section, we describe briefly the design of the
InterGrid Gateway (IGG), which is analogous to the
scheduler and uses a VIE to enforce virtual machine
leases granted to users. The names of the components
derive from our previous work on the interconnection
of computational Grids [8]. A complete description of
the implementation and an evaluation of the system is
available elsewhere [10].

IGGs can have peering relationships that define un-
der which circumstances they borrow resources from
one another (i.e. redirection strategies). These peer-
ing relationships specify when an IGG seeks to use re-
sources from another IGG and how the IGG evaluates a
request for resources from another IGG. The IGG has
been implemented in Java, and a layered view of its
components is presented in Figure 2.

Co
m

m
un

ic
at

io
n

M
od

ul
e

Management and Monitoring (JMX)

Scheduler
(Provisioning Policies and

Peering)
Pe

rs
is

te
nc

e
Ja

va
 D

er
by

 D
B

Virtual Machine Manager

Emulator Local
Resources

IaaS
Provider

InterGrid Gateway

Fig. 2 Main components of the IGG.

The central component of the IGG is the Scheduler ;
in charge of serving users’ requests, handling reserva-
tions, and managing start and stop of virtual machines
when jobs are scheduled. The scheduler maintains the
resource availability information and interacts with the
Virtual Machine Manager (VM Manager) for creating,
starting or stopping virtual machines to fulfil the re-
quirements of the scheduled requests.

The IGG does not share physical resources directly,
but relies on virtualisation technology to abstract them.
The VM Manager controls the deployment of virtual

6

machines for the IGG. The types of virtual machines
available for the IGG are described as Virtual Machine
Templates, which are analogous to computers’ config-
urations. A VM template describes a type of VM and
contains information such as the number of processors
or cores assigned to the VM, the amount of memory, the
kernel used to boot the operating system, the disk im-
age, and the price of using a VM of this type over one
hour. All available templates are stored in the IGG’s
repository. At present, users willing to request VMs,
need to specify the templates they want to use from
the repository. In addition, IGGs need to agree on the
templates in order to allow one IGG to borrow VMs
from another. In this work, we consider that the Cloud
provider has a matching template for each template
available at the organisation’s cluster.

The VM Manager deploys VMs on physical resources
when requested by the IGG. The scheduling strategies
that define when and which VMs are started or shut
down are implemented as part of the IGG’s scheduler.
The VM Manager relies on a VIE for deploying and
managing VMs; the current implementation uses Open
Nebula as a VIE for virtualising a physical cluster in-
frastructure. In addition, the VM Manager is able to
control VMs hosted by a Cloud provider such as Ama-
zon EC2 [1].

The Communication Module is responsible for mes-
sage passing. This module receives messages from other
entities and delivers them to the components registered
as listeners. Message-passing makes gateways loosely
coupled and allows for more failure-tolerant commu-
nication protocols.

5 Performance Evaluation

This section describes the scenario considered for per-
formance evaluation, the performance metrics, and ex-
perimental results.

5.1 Experimental Scenario

The evaluation of the strategies is performed by using a
discrete-event simulator [5]. We use simulation because
it enables us to perform repeatable experiments, and
the cost incurred by performing experiments on real in-
frastructure would be prohibitively expensive. To store
the information about resources available for running
virtual machines, the scheduler uses a data structure
based on a red-black tree [7] whose nodes contain the
list of resources available at the start or completion of
leases. The tree is augmented by a double-linked list

connecting the sibling nodes; this list eases the inter-
action for finding alternative time slots when handling
advance reservations or looking for potential start times
for requests. This data structure is based on the idea
of availability profile used in some implementations of
conservative backfilling [25].

For the experiments that do not involve advance
reservations, we model the San Diego Super Computer
(SDSC) Blue Horizon machine because job traces col-
lected from this supercomputer are publicly available1

and have been studied previously [23]. The Blue Hori-
zon machine comprises 144 nodes. The experiments with
advance reservations model the infrastructure of the
Lyon site of Grid’50002. This site has 135 nodes and
the requests submitted to it resemble requests for vir-
tual machines; users reserve resources and deploy sys-
tem images containing the customised operating system
and required applications. To model the workload we
use traces collected from this site containing one year
of request submissions.

The limit of virtual machines that the site can host
is the same as the number of nodes. In addition, in this
work the maximum number of virtual machines that
can be in execution by the Cloud provider at a particu-
lar time is the same as the maximum in the local cluster.
We plan to relax this assumption in future work.

To compute the cost of using resources from the
Cloud provider, we use the amounts charged by Ama-
zon to run basic virtual machines at EC2 (i.e. as of
writing of this paper the rate was US$0.10 per vir-
tual machine/hour). The experiments consider only the
amount charged to run VMs, but in practice Amazon
charges for the usage of other resources such as net-
work and storage. Other usage fees are not considered
in this work because they depend on the applications’
communication and data requirements.

The operating system running on a virtual machine
takes from a few seconds to some minutes to boot, but
Amazon commences charging users when the VM pro-
cess starts. The experiments therefore consider that the
booting time is already included into the request’s du-
ration. In addition, the experiments consider full-hours
of utilisation; if a request uses a VM for 30 minutes for
example, the cost of one hour is considered.

5.2 Performance Metrics

Some metrics related to requests’ response times in-
clude the bounded job slowdown (bound=10 seconds),
hereafter referred only as job slowdown [13] and the

1 http://www.cs.huji.ac.il/labs/parallel/workload/
2 http://www.grid5000.fr/

7

Average Weighted Response Time (AWRT) [16]. The
AWRT measures how long on average users wait to have
their requests completed. A short AWRT indicates that
on average users do not wait long for their requests to
complete.

AWRT =

∑
j∈τk

pj ·mj · (ctj − stj)∑
j∈τk

pj ·mj

(2)

The AWRT is given by Equation 2, where mj is the
number of virtual machines required by request j, pj
is the execution time of the request, ctj is the time of
completion of the request and stj is its submission time.
The resource consumption (pj ·mj) of each request j is
used as the weight.

In order to compute the benefits of using one strat-
egy over another, we also compute the cost ratio be-
tween AWRT and the amount spent in running virtual
machines on the Cloud. In addition, we measure the
number of deadline violations and request rejections
when we evaluate scenarios where some requests are
deadline constrained. More information about the ra-
tios is provided along with respective experiments.

5.3 Experimental Results

The first experiment evaluates the performance improve-
ment of different strategy sets by running virtual ma-
chines on the Cloud provider and the cost of such im-
provement in each case. This experiment uses a metric
termed as performance cost. The performance cost of a
strategy st is given by Equation 3.

perf. costst =
Amount spent

AWRTbase −AWRTst
∗AWRTst (3)

where Amount spent is the amount spent running vir-
tual machines on the Cloud provider, AWRTbase is the
AWRT achieved by a base strategy that schedules re-
quests using only the site’s resources and AWRTst is
the AWRT reached by the strategy st when Cloud re-
sources are also utilised. This metric aims to quantify
the improvement achieved in AWRT and its cost; the
smaller the performance improvement cost, the better
the strategy performs. In the experiments described in
this section, the base strategy is FCFS with aggressive
backfilling.

For this experiment, the site’s workloads have been
generated using Lublin and Feitelson’s model [23], here

referred to as Lublin99. Lublin99 has been configured
to generate two-month-long workloads of type-less re-
quests (i.e. no distinction is made between batch and
interactive requests); the maximum number of CPUs
used by the generated requests is set to the number
of nodes in the cluster. This experiment evaluates the
performance cost under different types of workloads. In
order to generate different workloads, we modify three
parameters of Lublin99’s model, one at a time. First,
we change the mean number of virtual machines re-
quired by a request (specified in log2) to log2m−umed
where m is the maximum number of virtual machines
allowed in system. We vary umed from 1.5 to 3.5. The
larger the value of umed, the smaller the requests be-
come in terms of numbers of VMs required and con-
sequently result in lighter loads. The second parame-
ter changed in the experiments affects the inter-arrival
time of requests at rush hours. The inter-arrival rate
of jobs is modified by setting the β of the gamma dis-
tribution (hereafter termed barr), which we vary from
0.45 to 0.55. As the values for barr increase, the inter-
arrival time of requests also increases. The last param-
eter impacts on the request duration by changing the
proportion of the first gamma in the hyper-gamma dis-
tribution used to compute the requests runtimes. The
proportion p of the first gamma in Lublin99’s model is
given by p = pa∗nodes+pb. We vary the paremeter pb
from 0.5 to 1.0. The larger the value of pb, the smaller
the duration of the requests.

The results of this experiment are shown in Figure 3.
Each data point is the average of 5 simulation rounds.
Graphs (a), (b) and (c) show the site’s utilisation un-
der aggressive backfilling scheduling when the Cloud
resources are not used. These graphs illustrate the ef-
fect of the parameter changes on the load. Graphs (d),
(e) and (f) show the performance cost when we vary:
the number of VMs required by a request, the inter-
arrival interval and the request’s duration, respectively.
The higher values obtained by the näıve strategy show
that more money is spent to achieve an improvement
in AWRT, especially under heavy loads, as shown in
graph (d). From graphs (a) and (d), we also observe
that the performance cost of using the Cloud is linear
with the decrease in number of VMs of requests except
for the näıve strategy, which is very expensive for small
requests. Under lighter loads, all strategies tend to yield
the same ratio of cost and performance. With small
inter-arrival periods, all strategies have similar perfor-
mance, except the näıve strategy. The näıve strategy
again provides a high performance cost, as shown in
graph (e). With the variation of request arrival time,
the experiments show a limit of the performance cost
close to US$5,500. The cost increases until this limit

8

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1.5
 2 2.5

 3 3.5

P
e
rf

o
rm

a
n
c
e
 C

o
s
t

umed

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Weighted Queue
Selective

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1.5
 2 2.5

 3 3.5

S
it
e
 U

ti
lis

a
ti
o
n
 (

%
)

umed

Varying Request Size

(d) (e) (f)

(a) (b) (c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0.45
0.46

0.47
0.48

0.49
0.5 0.51

0.52
0.53

0.54
0.55

P
e
rf

o
rm

a
n
c
e
 C

o
s
t

barr

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Weighted Queue
Selective

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.45
0.46

0.47
0.48

0.49
0.5 0.51

0.52
0.53

0.54
0.55

S
it
e
 U

ti
lis

a
ti
o
n
 (

%
)

barr

Varying Request Arrival Time

(d) (e) (f)

(a) (b) (c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.5
 0.56

 0.62
 0.68

 0.74
 0.8

 0.86
 0.92

 0.98

P
e
rf

o
rm

a
n
c
e
 C

o
s
t

pb

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Weighted Queue
Selective

 40

 50

 60

 70

 80

 90

 100

 0.5
 0.56

 0.62
 0.68

 0.74
 0.8

 0.86
 0.92

 0.98

S
it
e
 U

ti
lis

a
ti
o
n
 (

%
)

pb

Varying Request Duration

(d) (e) (f)

(a) (b) (c)

Fig. 3 The top three graphs show the site’s utilisation using the base aggressive backfilling strategy without Cloud resources; the
bottom three graphs show the performance cost under different workloads. Higher values of umed result in requests requiring a larger

number of VMs. The larger the value of barr, the greater the inter-arrival time of requests at rush hours. The time duration of the

requests decrease as the value of pb increases. Each data point is the average of 5 simulation rounds.

and then decreases, due to the increase of the request
inter-arrival time. More time between requests allows
using less resources, which makes it more costly to rely
on the Cloud to improve the request response time. For
smaller inter-arrival time values, there is an important
difference in cost of performance for the näıve strat-
egy in comparison to other strategies. In the last part
of the experiment, graphs (c) and (f), all strategies re-
turn similar performance cost for the same request du-
ration variation. The performance cost is inversely pro-
portional to the cluster usage.

The second experiment evaluates the site using re-
sources from the Cloud to meet service level agreements
with consumers. In this experiment the requests have
deadlines and we measure the cost of reducing deadline
violations, or requests completing after their deadlines.
The cost of reducing deadlines using a strategy st is
given by Equation 4.

non− violation costst =
Amount spentst
violbase − violst

(4)

where Amount spentst is the amount spent with Cloud
resources, violbase is the number of violations using a
base strategy and violst is the number of violations un-
der the evaluated strategy. The base policy is aggressive
backfilling sorting the jobs for scheduling and backfill-
ing in an Earliest Deadline First manner.

This experiment uses real job traces collected from
the SDSC Blue Horizon machine to model the workload

of the site’s cluster. As the job trace spans a period of
two years, we divide it into intervals of two months
each. For each experiment, we perform 5 simulation
rounds using a different workload for each round. As
the deadline information is not available in the trace,
we use a Bernoulli distribution to select from the trace
the requests that should have deadlines. In this way, a
request read from the job trace file has a probability of
being deadline constrained. The experiments consider
different numbers of deadline constrained requests.

To generate the request deadlines we use a tech-
nique described by Islam et al. [20], which provides a
feasible schedule for the jobs. To obtain the deadlines,
we perform the experiments by scheduling requests on
the site’s cluster without the Cloud using aggressive
backfilling. After that, the deadline dj of a job j is cal-
culated using Equation 5:

dj =

{
stj + (taj ∗ sf), if [stj + (taj ∗ sf)] < ctj

ctj , otherwise

(5)

where stj is the request j’s submission time, ctj is its
completion time, taj if the request’s turn around time
(i.e. the difference between the request’s completion
and submission times) and sf is a stringency factor
that indicates how urgent the deadlines are. If sf = 1,
then the request’s deadline is the completion under the

9

aggressive backfilling scenario. We evaluate the strate-
gies with different stringency factors (i.e. 0.9, 1.3 and
1.7 termed tight, normal and relaxed deadline scenarios
respectively).

The results of this experiment are depicted in Fig-
ure 4. The top graphs show the amount spent using re-
sources from the Cloud provider to reduce the number
of deadline violations. The Conservative and the Ag-
gressive deadline strategies spend smaller amounts than
the remaining strategies because they are designed to
consider deadlines. Other strategies, except the näıve,
sort the requests according to deadlines; however, take
into account other performance aspects such as min-
imising response time when redirecting requests to be
scheduled on the Cloud. With a small proportion of
deadline constrained requests with tight deadlines, the
aggressive strategy had a smaller cost that the con-
servative strategy. With normal deadlines and a large
number of deadline constrained requests, the aggressive
strategy spends more than the conservative strategy.

We decided to evaluate the aggressive deadline strat-
egy further in a scenario considering only the site’s re-
sources and a case considering the site and the Cloud.
If the deadline of a request cannot be met, the request
is rejected. This experiment evaluates how much the or-
ganisation would need to spend to decrease the number
of jobs rejected. The results are summarised in Figure 5.

 0

 2

 4

 6

 8

 10

 12

 14

 16

5 10 15 20 25 30 35 40 45 50 55 60 65 70

J
o
b
s
 r

e
je

c
te

d
 (

%
)

(%) of deadline constrained requests

Jobs Rejected (b)

(a)

Tight deadlines
Normal deadlines

Relaxed deadlines
No Cloud - Tight deadlines

No Cloud - Normal deadlines
No Cloud - Relaxed deadlines

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
m

o
u
n
t
S

p
e
n
t
($

)

(%) of deadline constrained requests

Amount Spent on the Cloud

(b)

(a)

Tight deadlines
Normal deadlines

Relaxed deadlines

Fig. 5 (a) amount spent using resources from the Cloud

provider; (b) the decrease of requests rejected. Each data point
is the average of 5 simulation rounds.

Figure 5 (a) shows the amount spent on the Cloud
and (b) depicts the percentage of jobs rejected when the
Cloud is used and not used. An amount of US$3,000 is
spent on the Cloud to keep the number of jobs rejected
close to zero under a case where 70% of the requests
have deadlines. With normal deadlines, the strategy did
not spend more than US$1,500 in any quantity of dead-
line constrained requests.

Again using traces from the SDSC Blue Horizon,
this experiment evaluates the amount of money spent
using the Cloud infrastructure under different schedul-
ing strategies, and compares the improvement of the
strategies to a scenario where requests were scheduled
using only the site’s resources with aggressive back-
filling. Table 1 summarises the results. All the strate-
gies perform similarly in terms of AWRT improvement.
However, the proposed strategy set based on selective
backfilling yields a better ratio of slowdown improve-
ment to amount of money spent for using Cloud re-
sources.

The experimental results show that the cost of in-
creasing the performance of application scheduling is
higher under a scenario where the site’s cluster is un-
derutilised. However, the cost-benefit of using a näıve
scheduling strategy can be smaller than using other ap-
proaches as a large cost is incurred under scenarios of
high system utilisation. In addition, request backfilling
and redirection based on the expansion factors (i.e. se-
lective backfilling) have shown a good ratio of slowdown
improvement to amount of money spent for using Cloud
resources.

5.4 Advance Reservations

The experiments discussed in this section measure the
cost of handling additional load by using the Cloud
to increase the support for reservation of resources.
Thereby, we measure the cost of redirecting reserva-
tion requests to a Cloud provider and the cost of wast-
ing Cloud resources if the redirected requests fail. As
described beforehand, the experiments use a trace col-
lected from a Grid’5000 site containing one year of re-
quest submissions. We split the trace into two-month-
long periods, and we use a different part for each sim-
ulation round. All values reported by the experiments
are averages of 5 simulation rounds.

The original request trace contains reservation and
best-effort requests. Best-effort requests do not require
reservation of resources and their start times are de-
termined by the scheduler; the scheduler places then
in the queue and starts their execution at the earliest
time when enough resources are available; a best-effort

10

 0

 10

 20

 30

 40

 50

 60

 70

5 10 15 20 25 30 35 40 45 50 55 60 65 70

N
o
n
-v

io
la

ti
o
n
 c

o
s
t

(%) of deadline constrained requests

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative

Weighted Queue
Aggressive

 0

 50

 100

 150

 200

 250

 300

5 10 15 20 25 30 35 40 45 50 55 60 65 70

N
o
n
-v

io
la

ti
o
n
 c

o
s
t

(%) of deadline constrained requests

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative

Weighted Queue
Aggressive

 0

 50

 100

 150

 200

 250

 300

 350

5 10 15 20 25 30 35 40 45 50 55 60 65 70

N
o
n
-v

io
la

ti
o
n
 c

o
s
t

(%) of deadline constrained requests

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative

Weighted Queue
Aggressive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
m

o
u
n
t
s
p
e
n
t
($

)

(%) of deadline constrained requests

Tight Deadlines

(d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative

Weighted Queue
Aggressive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
m

o
u
n
t
s
p
e
n
t
($

)

(%) of deadline constrained requests

Normal Deadlines

(d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative

Weighted Queue
Aggressive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
m

o
u
n
t
s
p
e
n
t
($

)

(%) of deadline constrained requests

Relaxed Deadlines

(d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative

Weighted Queue
Aggressive

Fig. 4 The top graphs show the amount spent using resources from the Cloud provider; the bottom graphs show the cost of decreasing
deadline violations under different numbers of deadline constrained requests and different types of deadlines. Each data point is the

average of 5 simulation rounds.

Table 1 Performance of the strategies using workload traces (averages of 5 simulation rounds).

Metric description Näıve Shortest Queue Weighted Queue Selective

Amount spent with VM instances ($) 5478.54 5927.08 5855.04 4880.16

Number of VM instances/Hours 54785.40 59270.80 58550.40 48801.60
Average weighted response time (improvement) 15036.77 15065.47 15435.11 14632.34

Overall Job slowdown (improvement) 38.29 37.65 38.42 39.70

request can be preempted to make room for a reserva-
tion. Whilst we maintain the ratio of reservation and
best-effort requests in the experiments, we do not con-
sider preemption of requests; once the schedule of a
best-effort request is determined, it is not preempted
to give room for a reservation.

To measure the cost of increasing the support for ad-
vance reservations, we select randomly from the trace
the requests that correspond to the additional load.
That is, all the original requests are submitted, along
with requests randomly selected from the same trace
(i.e. additional load). The percentage of requests se-
lected is the additional load and varies from 0 to 100%.
Furthermore, the trace contains requests whose execu-
tions have failed due to factors such as incorrect con-
figuration of system images and problems with the de-
ployed application. When these requests are redirected
to a Cloud provider and the required virtual machines
are started, but not fully utilised because the applica-
tion has failed, the allocation corresponds to a wastage
of resources from the organisation’s perspective. Al-
though we do not have details about the reasons why
these applications have failed in the original execution,

we attempt to measure the money spent (or wasted) to
allocate resources from the Cloud to serve these appli-
cations.

Table 2 summarises the results. The first line shows
the amount of money spent using resources from the
Cloud under various additional load configurations. The
second and the third lines show respectively the num-
ber of requests redirected to the Cloud and their corre-
sponding load percentages compared to the overall load
generated. The last line shows the amount of money (in
US$) spent with requests whose executions have failed.
One can observe that all the additional load injected is
redirected to the Cloud provider and that the amount
spent on the Cloud grows proportionaly to the load
redirected. Furthermore, around 60% to 70% of the
money spent by using resources from the Cloud were
spent on requests whose executions have failed. As dis-
cussed beforehand, it is difficult to argue that all these
failures reported in the original log have roots on de-
ployment issues; and that is probably not the case. In
addition, one can advocate that a commercial provider
would offer minimum quality of service and resource
availability guarantees that could minimise the number

11

Table 2 Cost of increasing the support for reservations (averages of 5 simulation rounds).

Additional Load 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Amount spent on the Cloud ($) 77 754 1778 3034 3926 5073 6079 6931 8736 9595 10460

Number of requests redirected 114 1032 1748 2939 4254 5795 7018 9375 11595 14535 16701
Load redirected (%) 0.52 5.20 11.58 19.47 23.31 29.78 32.86 35.68 45.11 48.27 52.15

Amount wasted with failures ($) 49 567 1355 2379 3044 3927 4693 5175 6653 7187 7778

of failures. However, it is important to notice that the
results demonstrate that if a commercial Cloud provider
is used to extend the capacity of a local infrastructure,
deployment of applications and load redirection have to
be planned carefully to avoid wastage of resources and
consequently waste of money.

6 Related Work

Lease abstractions relying on virtual machine technol-
ogy have been proposed [33,21,19]. Sotomayor et al. [33]
explored a lease abstraction to handle the scheduling of
a combination of best-effort jobs and advance reserva-
tions. Keahey et al. [21] demonstrated how to create
customised execution environments for a Grid commu-
nity via Globus Virtual Workspaces. Shirako provides
a system of brokers that enable the leasing of various
types of resources including virtual machines [19]. In
addition, the number of migrations required when the
broker and a site scheduler use conflicting policies has
been investigated [17]. We evaluate the cost of extend-
ing the capacity of an organisation’s cluster for improv-
ing the response time of user requests.

The applicability of Amazon services for Grid com-
puting has been demonstrated in existing work. Palankar
et al. [27] evaluated the use of Amazon S3 for Science
Grids with data-intensive applications and concluded
that Amazon S3 can be used for some of the operations
required by data-intensive Grid applications. Although
Grid applications can benefit from using Amazon ser-
vices, such as improving data availability, Palankar et
al. highlighted that a balance between the benefits of
Amazon services and the cost of using Amazon’s in-
frastructure should be taken into account. This balance
involves performing expensive operations that generate
large amounts of temporary data at the Grid infras-
tructure. Deelman et al. [9] evaluated the cost of using
Amazon EC2 and S3 services to serve the resource re-
quirements of a scientific application.

Existing work has shown how to enable virtual clus-
ters that span multiple physical computer clusters [11,
30,31]. Emeneker et al. [11] evaluated the overhead of
creating virtual clusters using Xen [4] and the Moab
scheduler. VioCluster [30] is a system in which a bro-

ker responsible for managing a virtual domain (i.e. a
virtual cluster) can borrow resources from another bro-
ker. Brokers have borrowing and lending policies that
define when machines are requested from other brokers
and when they are returned, respectively. The resources
borrowed by one broker from another are used to run
User Mode Linux virtual machines.

Systems for virtualising a physical infrastructure are
also available. Montero et al. [24] investigated the de-
ployment of custom execution environments using Open
Nebula. They investigated the overhead of two distinct
models for starting virtual machines and adding them
to an execution environment. Montero et al. [29] also
used GridWay to deploy virtual machines on a Globus
Grid; jobs are encapsulated as virtual machines. They
evaluated several strategies such as using one virtual
machine execution per job, pausing the virtual machine
between job executions, and reusing the virtual machine
for multiple job executions. Montero et al. showed that
the overhead of starting a virtual machine is small for
the application evaluated. We use Open Nebula in the
real system implementation of our architecture.

Singh et al. [32] proposed an adaptive pricing for
advance reservations where the price of a reservation
depends on how many jobs it delays. Aggressive back-
filling is used to build a tentative schedule and test how
many jobs are delayed. We use a similar approach for
request admission control in one of our deadline-aware
strategies and for deciding on the redirection of requests
to the Cloud provider.

Market based resource allocation mechanisms for
large-scale distributed systems have been investigated
[39]. In this work, we do not explore a market-based
mechanism as we rely on utilising resources from a Cloud
provider that has cost structures in place. We focus
on evaluating the trade-offs between improvement of
scheduling user applications and cost of resource utili-
sation. Specifically, we aim to evaluate the cost of per-
formance improvements.

Several load sharing mechanisms have been investi-
gated in the distributed systems realm. Iosup et al. [18]
proposed a matchmaking mechanism for enabling re-
source sharing across computational Grids. Wang and
Morris [37] investigated different strategies for load shar-
ing across computers in a local area network. Surana et

12

al. [35] addressed the load balancing in DHT-based P2P
networks. Balazinska et al. [3] proposed a mechanism
for migrating stream processing operators in a feder-
ated system. We evaluate the benefits and the cost of
adding resources from a Cloud provider to an organisa-
tion’s infrastructure.

7 Conclusions

This paper evaluated the cost of improving the schedul-
ing performance of virtual machine requests by allocat-
ing additional resources from a Cloud computing in-
frastructure. We considered the case of an organisation
that operates its computing infrastructure, but wants
to allocate additional resources from a Cloud infras-
tructure. The experiments evaluated the cost of im-
proving the performance under different strategies for
scheduling requests on the organisation’s cluster and
the Cloud provider. Näıve scheduling strategies can re-
sult in a higher cost under heavy load conditions. Ex-
perimental results showed that the cost of increasing
the performance of application scheduling is higher un-
der a scenario where the site’s cluster is under-utilised.
In addition, request backfilling and redirection based on
the expansion factors (i.e. selective backfilling) showed
a good ratio of slowdown improvement to the money
spent for using Cloud resources.

In future work, we would like to study the perfor-
mance of different types of applications, such as bag-
of-tasks or SPMD running on the local cluster, on the
Cloud provider, and both at the same time. In addi-
tion, we are currently working on an adaptive strategy
that aims to optimise scheduling performance consider-
ing the user’s budget. For a given budget amount, the
scheduler would find the best strategy to fulfil the user’s
request.

8 Acknowledgments

We would like to thank Sungjin Choi, Suraj Pandey,
Carlos Varela, and Marco Netto for their feedback on a
preliminary version of this work. We carried out some
experiments using traces collected from the Grid’5000
platform, an initiative from the French Ministry of Re-
search through the ACI GRID incentive action, IN-
RIA, CNRS, RENATER and other contributing part-
ners (http://www.grid5000.fr).

References

1. Amazon Inc. Amazon Elastic Compute Cloud (Amazon

EC2). http://aws.amazon.com/ec2.

2. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,

and M. Zaharia. Above the clouds: A Berkeley view of Cloud
computing. Technical report UCB/EECS-2009-28, Electrical

Engineering and Computer Sciences, University of California

at Berkeley, Berkeley, USA, February 2009.

3. M. Balazinska, H. Balakrishnan, and M. Stonebraker.

Contract-based load management in federated distributed

systems. In 1st Symposium on Networked Systems Design
and Implementation (NSDI), pages 197–210, San Francisco,

USA, March 2004. USENIX Association.

4. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art

of virtualization. In 19th ACM Symposium on Operating

Systems Principles (SOSP ’03), pages 164–177, New York,
NY, USA, 2003. ACM Press.

5. R. Buyya and M. Murshed. GridSim: a toolkit for the model-

ing and simulation of distributed resource management and
scheduling for Grid computing. Concurrency and Computa-

tion: Practice and Experience (CPE), 14(13–15):1175–1220,
November-December 2002.

6. J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E.

Sprenkle. Dynamic virtual clusters in a Grid site manager. In
12th IEEE International Symposium on High Performance

Distributed Computing (HPDC 2003), page 90, Washington,

DC, USA, 2003. IEEE Computer Society.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press / McGraw-Hill, Cam-

bridge, Massachusetts, 2nd edition, 2001.

8. M. D. de Assunção, R. Buyya, and S. Venugopal. InterGrid:

A case for internetworking islands of Grids. Concurrency and

Computation: Practice and Experience (CCPE), 20(8):997–
1024, June 2008.

9. E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good.

The cost of doing science on the Cloud: The montage ex-
ample. In 2008 ACM/IEEE Conference on Supercomputing

(SC 2008), pages 1–12, Piscataway, NJ, USA, 2008. IEEE

Press.

10. A. di Costanzo, M. D. de Assunção, and R. Buyya. Harness-

ing cloud technologies for a virtualized distributed comput-

ing infrastructure. IEEE Internet Computing, 13(5):24–33,
2009.

11. W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione.

Dynamic virtual clustering with Xen and Moab. In Fron-
tiers of High Performance Computing and Networking

with ISPA 2006, volume 4331 of LNCS, pages 440–451,

Berlin/Heidelberg, November 2006. Springer.

12. D. England and J. B. Weissman. Costs and benefits of load

sharing in the computational Grid. In 10th International

Workshop on Job Scheduling Strategies for Parallel Process-
ing (JSSPP ’04), volume 3277 of LNCS, pages 160–175, New

York, USA, 2004. Springer Berling Heidelberg.

13. D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sev-
cik, and P. Wong. Theory and practice in parallel job schedul-

ing. In Job Scheduling Strategies for Parallel Processing

(IPPS ’97), pages 1–34, London, UK, 1997. Springer-Verlag.

14. J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and I. M.
Llorente. OpenNEbula: The open source virtual machine

manager for cluster computing. In Open Source Grid and
Cluster Software Conference – Book of Abstracts, San Fran-

cisco, USA, May 2008.

15. I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. So-
tomayor, and X. Zhang. Virtual clusters for Grid commu-

nities. In 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID 2006), pages 513–520,

Washington, DC, USA, May 2006. IEEE Computer Society.

13

16. C. Grimme, J. Lepping, and A. Papaspyrou. Prospects of
collaboration between compute providers by means of job

interchange. In Job Scheduling Strategies for Parallel Pro-

cessing, volume 4942 of Lecture Notes in Computer Science,
pages 132–151, Berlin / Heidelberg, April 2008. Springer.

17. L. Grit, D. Inwin, A. Yumerefendi, and J. Chase. Virtual

machine hosting for networked clusters: Building the foun-
dations for ‘autonomic’ orchestration. In 1st International

Workshop on Virtualization Technology in Distributed Com-
puting (VTDC 2006), Tampa, Florida, November 2006.

18. A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, and

M. Livny. Inter-operating Grids through delegated match-
making. In 2007 ACM/IEEE Conference on Supercomput-

ing (SC 2007), pages 1–12, New York, USA, November 2007.

ACM Press.

19. D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and

K. G. Yocum. Sharing networked resources with brokered

leases. In USENIX Annual Technical Conference, pages 199–
212, Berkeley, USA, June 2006. USENIX Association.

20. M. Islam, P. Balaji, P. Sadayappan, and D. K. Panda. QoPS:

A QoS based scheme for parallel job scheduling. In 9th Inter-
national Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP ’03), volume 2862 of LNCS, pages 252–

268, Seattle, WA, USA, 2003. Springer.

21. K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual

workspaces: Achieving quality of service and quality of life

in the Grids. Scientific Programming, 13(4):265–275, 2006.

22. D. A. Lifka. The ANL/IBM SP scheduling system. In

Workshop on Job Scheduling Strategies for Parallel Process-

ing (IPPS’95), pages 295–303, London, UK, 1995. Springer-
Verlag.

23. U. Lublin and D. G. Feitelson. The workload on parallel

supercomputers: Modeling the characteristics of rigid jobs.
Journal of Parallel and Distributed Computing, 63(11):1105–

1122, 2003.

24. R. S. Montero, E. Huedo, and I. M. Llorente. Dynamic
deployment of custom execution environments in Grids.

In 2nd International Conference on Advanced Engineer-

ing Computing and Applications in Sciences (ADVCOMP
’08), pages 33–38, Valencia, Spain, September/October 2008.

IEEE Computer Society.

25. A. W. Mu’alem and D. G. Feitelson. Utilization, predictabil-
ity, workloads, and user runtime estimates in scheduling the

IBM SP2 with backfilling. IEEE Transactions on Parallel

and Distributed Systems, 12(6):529–543, 2001.

26. D. Nurmi, R. Wolski, C. Crzegorczyk, G. Obertelli, S. So-

man, L. Youseff, and D. Zagorodnov. Eucalyptus: a techni-

cal report on an elastic utility computing architecture linking
your programs to useful systems. Technical Report 2008-10,

Department of Computer Science, University of California,
Santa Barbara, California, USA, 2008.

27. M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel.

Amazon S3 for science Grids: a viable solution? In Inter-
national Workshop on Data-aware Distributed Computing

(DADC’08) in conjunction with HPDC 2008, pages 55–64,

New York, NY, USA, 2008. ACM.

28. L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi,
A. Iamnitchi, and J. Chase. Toward a doctrine of contain-

ment: Grid hosting with adaptive resource control. In 2006
ACM/IEEE Conference on Supercomputing (SC 2006), page

101, New York, NY, USA, 2006. ACM Press.

29. A. Rubio-Montero, E. Huedo, R. Montero, and I. Llorente.
Management of virtual machines on globus Grids using Grid-

Way. In IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS 2007), pages 1–7, Long Beach,
USA, March 2007. IEEE Computer Society.

30. P. Ruth, P. McGachey, and D. Xu. VioCluster: Virtualization

for dynamic computational domain. In IEEE International
on Cluster Computing (Cluster 2005), pages 1–10, Burling-

ton, USA, September 2005. IEEE.
31. A. Shoykhet, J. Lange, and P. Dinda. Virtuoso: A system for

virtual machine marketplaces. Technical Report NWU-CS-

04-39, Electrical Engineering and Computer Science Depart-
ment, Northwestern University, Evanston/Chicago, IL, July

2004.

32. G. Singh, C. Kesselman, and E. Deelman. Adaptive pric-
ing for resource reservations in shared environments. In 8th

IEEE/ACM International Conference on Grid Computing

(Grid 2007), pages 74–80, Austin, USA, September 2007.
ACM/IEEE.

33. B. Sotomayor, K. Keahey, and I. Foster. Combining batch

execution and leasing using virtual machines. In 17th Inter-
national Symposium on High performance Distributed Com-

puting (HPDC 2008), pages 87–96, New York, NY, USA,
2008. ACM.

34. S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sa-

dayappan. Selective reservation strategies for backfill job
scheduling. In 8th International Workshop on Job Scheduling

Strategies for Parallel Processing (JSSPP ’02), volume 2537

of LNCS, pages 55–71, London, UK, 2002. Springer Berlin
Heidelberg.

35. S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and

I. Stoica. Load balancing in dynamic structured peer-to-peer
systems. Performance Evaluation, 63(3):217–240, 2006.

36. M. Tatezono, N. Maruyama, and S. Matsuoka. Making wide-

area, multi-site MPI feasible using Xen VM. In Workshop on
Frontiers of High Performance Computing and Networking

(held with ISPA 2006), volume 4331 of LNCS, pages 387–
396, Berlin/Heidelberg, 2006. Springer.

37. Y.-T. Wang and R. J. T. Morris. Load sharing in distributed

systems. IEEE Transactions on Computers, C-34(3):204–
217, March 1985.

38. A. Weiss. Computing in the Clouds. netWorker, 11(4):16–25,

December 2007.
39. R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing

market-based resource allocation strategies for the computa-

tional Grid. The International Journal of High Performance
Computing Applications, 15(3):258–281, Fall 2001.

