
Context-aware Job Scheduling for

Cloud Computing Environments

Marcos D. Assunção, Marco A. S. Netto,

Fernando Koch, Silvia Bianchi

IBM Research

Sao Paulo, Brazil

Abstract—The more instrumented society is demanding
smarter services to help coordinate daily activities and excep-
tional situations. Applications become sophisticated and context-
aware as the pervasiveness of technology increases. In order to
cope with resource limitations of mobile-based environments, it is
a common practice to delegate processing intensive components
to a Cloud Computing infrastructure. In this scenario, executions
of server-based jobs are still dependent on the local variations
of the end-user context. We claim that there is a need for an
advanced model for smarter services that combines techniques of
context awareness and adaptive job scheduling. This model aims
at rationalising the resource utilisation in a Cloud Computing
environment, while leading to significant improvement of quality
of service. In this paper, we introduce such a model and describe
its performance benefits through a combination of social and
service simulations. We analyse the results by demonstrating
gains in performance, quality of service, reduction of wasted
jobs, and improvement of overall end-user experience.

I. INTRODUCTION

Applications are becoming more sophisticated and context-

aware in order to meet the ever increasing users’ demand.

Such application solutions range from the popular Apple Siri

that delivers voice based assistance, IBM Shopping Personal

Assistant that provides personalised shopping support to end-

users, and customised personal assistants to provide support

in emergency coordination scenarios. The latter solution is

widespread in Central Operation setups, providing the infras-

tructure required for crowd coordination and monitoring.

To cope with resource limitations of mobile-based applica-

tions, it is a common practice to delegate processing intensive

components to a Cloud Computing infrastructure [1], [2]. For

instance, (a) Apple Siri runs its sophisticated voice recognition

feature remotely; (b) emergency coordination assistants could

execute the planning and scheduling processing on the Cloud;

and (c) material composer assistants that prepare tailored con-

tent for meetings helping on offices’ daily activities. Basically,

in any of these solutions the process works by invoking

server-based jobs that execute complex operations. Once a

job completes, it returns the results to the mobile device for

consumption.

In this scenario, the execution of a server-based job is still

dependent on variations of local context. However, the solution

is not always able to combine local context information to

coordinate the server-based job execution. For example, a plan

formed by emergency coordination assistants depends on how

local events evolve; events that can become outdated even

before their consumption. Similarly, the material generated by

material composer assistants becomes irrelevant if the end-user

decides not to participate in the meeting.

The question is: How to rationalise the utilisation of Cloud

resources by continuously adapting the execution of jobs in

response to variations of the end-user’s local context?

For that, there is an opportunity to construct a model for

smarter services that combines techniques of Context Aware-

ness and Adaptive Job Scheduling. In this work, we introduce

our research on advanced methods to adjust the priorities of

server-based jobs in response or proactively to variations of

the local context. Its application leads to significant improve-

ment of quality of service by reducing the usage of servers’

resources.

The key contributions of this work are towards a model to:

• Leverage user-context to optimise job scheduling in the

Cloud;

• Provide delay-tolerant job execution required in mobile

environments; and

• Reduce resource wastage by scheduling the jobs consid-

ering changes in user’s context.

We analysed the results by demonstrating the gains in

performance, quality of service, reduction of wasted jobs,

and improvement of overall end-user experience. We describe

the performance benefits of the proposed model through a

combination of social and service simulations. We conclude

that the impact is especially relevant in scenarios that involve

a large number of personal assistants combined with a highly

dynamic environment.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information on

context awareness and adaptive job scheduling.



A. On Context Awareness

Context can be defined to be a user’s physical, social,

emotional or informational state [3]–[5]. It can be described

as situations where the individual or machine is immersed.

In this scenario, context awareness is the ability to sense

and react to situation variations towards better operations.

This approach has been used by software to provide better

integration with the environment and reduce the need for user’s

input. As a general sense, there are three issues related to the

implementation of context awareness: (i) what information is

required by the application and how to represent it? (ii) how

the application collects this information? (iii) how to compute

upon this information, the so-called context processing?

We apply context awareness as a tool to automate adaptation

of the processing of jobs in the Cloud Computing environment

based upon variations of the local environment. For that, we

exploit the concept of window of opportunity, as presented

by Koch and Dighum [6], wherein the delivery of certain

information is more relevant to the user. Thus, the context

processing relates to the ability of sensing variation of local

context and computing its context distance to a certain con-

dition. This processing is trivial for some aspects of context,

such as location and time.

However, the representation of the situation encompasses

more aspects of the environment. Context information in mo-

bile setups encompasses information of eight dimensions, as

presented by Graham and Kjeldskov [7]: (i) time; (ii) absolute

location; (iii) relative location; (iv) objects present; (v) activity;

(vi) social setting; (vii) environment, and; (viii) culture. The

method to calculate in/out conditions for window of oppor-

tunity works based on answering questions like: Are certain

objects present? Is the user engaged in certain activities? Is

the user part of or near a certain social setting? Do the

environmental conditions enclose the situations a, b, and c?

The proximity can be derived from the conditions inferred

based on these questions. For example, an application can

infer that the user is in the window of opportunity if the user

is physically near a position such as a meeting room (absolute

location) and the application can access a file for the meeting

(objects present) in a few seconds (activity).

The ability to estimate the application’s relative position

into the window of opportunity to deliver relevant information

is essential to the operation of any well suited, context-aware

solution. To that intend, we are leveraging in our model a Con-

text Analyser able to infer context distances based on events

received from the environment. The output of this computation

is reasoned against the global context information (i.e. context

information computed from all users and infrastructure in the

system) and system’s situation to adjust the status of current

jobs.

B. On Adaptive Job Scheduling

Previous work leverages context information in mobile envi-

ronments to improve Cloud service delivery. A framework for

context-aware mobile services has been proposed by La and

Kim [8]. The framework focuses on service provisioning based

on context information. Depending on the user’s context, a set

of Cloud services can be provided or current services can be

adapted dynamically. Similar to this approach, Sheng et al. [9]

proposed a distributed, adaptive, and context-aware platform

for personalised service provisioning. The platform aims to

provide a more personalised service improving overall user

experience. Other approaches propose to allocate a requested

service to a specific service provider satisfying the quality of

service constraints [10], [11]. Software engineering has also

been considered to support context-aware applications [12].

Most of the context-aware Cloud services solutions focus on

providing more personalised services, but very few address the

problem of resource wastage.

Several job scheduling techniques have been proposed in

order to reduce resource wastage [13], [14]. Boloor et al.

proposed a request allocation algorithm for context-aware

applications hosted in a distributed Cloud [15]. The goal is

to meet the service level requirements to reduce the penalty

charges in the Cloud. Nevertheless, this approach does not

consider the window of opportunity during the job scheduling

to deliver useful information to the end user.

Other approaches focus on methods to enhance the perfor-

mance of local processing, bandwidth utilisation, memory con-

sumption, power and connectivity based on context awareness

techniques [6], [16]–[18]. Similarly, Capra et al. described an

infrastructure to compose local adaptation based on context

information [19].

In mobile environments the execution of jobs must adapt

to variations of the user context. However, most solutions

do not combine local context information to coordinate the

job execution. Our work extends the vision of these solutions

by adding the capability of central control and adjustment of

server-based job processing to the system.

C. Illustrative Scenario

In Cloud Computing, user context information can be

exploited to define priorities of jobs executed in the Cloud

associated with applications running on the handheld user

device.

Let us consider the illustrative scenario depicted in Figure

1. In this scenario, there is a user of a device D1 changing

context Ci in the following four dimensions:

• Time: refers to the time of day;

• Location: working area, demo room, and meeting room;

• Social settings: the set of users working in one or more

applications that depend on one another;

• Object’s present: applications App1, App2, App3 and

App4.

The user starts in context C0 where no application is

executed on his/her device D1. Thus, no job scheduling is

required. Then the user moves to the working area and starts

to use application App1 (Context C1), in which the final results

must be ready when he/she moves to the meeting room. The

associated remote jobs for App1 are created with low priority.





Fig. 3. Algorithm for scheduling jobs based on end-user local context.

A. Architecture

The proposed architecture comprises the five main compo-

nents depicted in Figure 2, which are described as follows:

Interface: provides support to receive information through

the communication structure (not presented), originated from

variations of local context being captured and transmitted by

the handheld devices. It is responsible for obtaining context

change information, request job executions, and for getting job

results.

Context Monitor: receives and interprets context information.

This process (i) stores and indexes context information in the

Repository of Context Information and (ii) triggers the analysis

process in the Context Analyser module.

Repository of Context Information: a database that stores

end-user context information – including when users change

their contexts, user profiles [20] – and configuration parame-

ters to translate context information into job priorities.

Context Analyser: works by analysing the received con-

text information and sending recommendations to the Job

Scheduler. The analysis involves (i) cross-relating the current

context to historical data, other system’s situational informa-

tion, eventual server-based context information (e.g. personal

information system stored on the Cloud provider), and existing

jobs, forming the global context, and; (ii) using the computed

information to calculate context proximity, such as to infer if

the user is near, distant, or out of the window of opportunity

for notification delivery.

Job Scheduler: receives recommendations for alterations of

job priorities and processes them accordingly. Several existing

priority-based algorithms can be used for job scheduling.

For instance, the scheduler can use existing policies such

as High-Priority Job First (HPJF) to sort and re-sort the

jobs for execution. Moreover, jobs with low priority can be

preempted to spare computing resources to high priority ones.

Alternatively, more resources can be provisioned to execute

high priority jobs. Different from traditional deadline-driven

scheduling, our scheduler does not know the period a user

will remain within a window of opportunity.

B. How does it work?

A flowchart in Figure 3 illustrates the algorithm for schedul-

ing jobs based on user local context. The algorithm consists

of the following steps:

1. The local context detector notifies the Cloud provider

upon a change in the local context.

2. The notification is intercepted by the Context Monitor

and stored in a Context information repository.

3. The Context Monitor determines whether the context

change triggers an event that may influence the current

job schedule.

4. The context change may require a new job to be created.

5. Whenever a new job is required, it is created with low

priority and added to the Job database.

6. Jobs can also be created upon explicit request from the

user.

7. Regardless the need to create a new job, the Job Scheduler

is notified of events that may affect the schedule.

8. Upon the receipt of such an event, the scheduler iterates

the jobs of the user whose context changed. For each job,

the scheduler:

8.1. Invokes the Context Analyser, which gathers informa-

tion about the current user context from the repository.



8.2. Computes the user proximity to the window of oppor-

tunity in which the job is required.

8.3. Sets the priority of the job according to the Proximity

based job priority table. An example of such a table is

provided, in which we define three levels of proximity.

However a more elaborated table with more levels of

proximity could be used.

9. Once the priorities are re-defined, the Job Scheduler can

schedule (or re-schedule) the jobs using a policy defined

by the administrator.

In what follows, we demonstrate the gains in resource

utilisation and quality of service obtained by applying the

aforementioned proposed architecture to the illustrative prob-

lem scenario.

IV. EVALUATION

The basis for the design of the context-aware job scheduling

is predicated on the idea that by allowing the Cloud provider to

analyse end-user local contexts, it is possible to avoid resource

waste and provide users with better quality of service. The

experimental results demonstrate that the principle is sound.

A. Environment Setup

We evaluated the context-aware job scheduling against the

traditional approach where static priorities are used to schedule

remote jobs. We developed an event driven-simulator that

contains the two approaches (i.e. context-aware scheduling

and traditional scheduling). Both approaches use HPJF to sort

jobs for preemption and scheduling. The simulator receives

a file containing information on user contexts and application

execution time. We crafted three workloads where users create

jobs according to their context. Each workload contains 20,000

users, and each user creates jobs in the Cloud according to a

normal distribution. Job execution times are defined according

to a normal distribution as well.

We consider the workload generated by a simulation that

reproduces a simplified societal behaviour. For each individ-

ual, we consider four equally distributed random behaviours

described in Figure 4(a).

Once the user enters the window of opportunity, it generates

an event to the Cloud Service requesting for the start of a

related job. Conversely, when stepping out of that context, it

issues an event to pause the job. In order to work properly, it is

expected that the jobs’ execution times are less than or equal

to the size of the window of opportunity. Should a job take

longer than that size (or not paused), the system will deliver

the information outside the window of opportunity. This event

will generate a job violation.

To replicate loads generated by a collective, we created a

social simulation for a variable number of end-users during the

day. In order to allow for reproducibility of the experiments,

we depicted the workloads in Figure 4(b). We consider three

variations of societal behaviours:

• Normal day: consists of small peaks of utilisation during

the start, middle, and end of work hours reflecting

(a) Individual behaviour.

1e+04

2e+04

3e+04

4e+04

●
● ●

●
●

●

●

●

●
●

●

● ●

● ● ●
●

●
●

● ●

●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

N
u
m

b
e
r 

o
f 

u
s
e
rs

Distribution ● normal flat peaky

(b) Societal behaviours

Fig. 4. Workload definition.

the time when office workers check their e-mails and

websites, for example. Outside these intervals, but still

in work hours, this workload remains around the peak

values, while outside the working hours it goes down

significantly. This load is realistic and most seen in

commercial production environments. This configuration

is used to test the solution’s behaviour handling normal

situations.

• Flat day: consists of a flat number of end-users during

the work hours. This load is unrealistic in real-world

environments that involve end-users, but can reflect some

automated environments. This configuration is useful to

create a common denominator for a “perfect world”

analysis.

• Peaky day: consists of tipping workload peaks during the

working hour. This configuration is realistic and reflects

the situation where impacting news reach the outside

world, causing office workers to access their e-mail and

websites often. The configuration is used to test the

solution’s behaviour handling stress situations.

The objective is to reproduce the Cloud service performance

whilst handling the workload generated by these three societal

behaviours. The perfect system should process the jobs while

the end-user is inside the window of opportunity and refraining

of delivering their results when already outside it. However,

due to variations of overall system workload, e.g. either

generated by the numerous end-user’s requests incoming from

peak time or lack of processing resources, the system may fail

to generate the jobs’ results in time. This leads to unexpected

job violation events.



20

40

60

80

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

U
ti
lis

a
ti
o
n
 (

%
)

Context ● off on

(a) Normal

20

40

60

80

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

U
ti
lis

a
ti
o
n
 (

%
)

Context ● off on

(b) Flat

20

40

60

80

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

U
ti
lis

a
ti
o
n
 (

%
)

Context ● off on

(c) Peaky

Fig. 5. System utilisation as a function of the number of resources and scheduling policy with and without context.

2e+04

3e+04

4e+04

5e+04

● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

V
io

la
te

d
 J

o
b
s

Context ● off on

(a) Normal

2e+04

3e+04

4e+04

5e+04

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

V
io

la
te

d
 J

o
b
s

Context ● off on

(b) Flat

2e+04

3e+04

4e+04

5e+04

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

50 100 150 200 250

Resources

V
io

la
te

d
 J

o
b
s

Context ● off on

(c) Peaky

Fig. 6. Number of violated jobs without context and with context as a function of the number of resources.

We demonstrate that the proposed solution is able to balance

the amount of resources and curb the effects of peak loads

by adjusting the processing prioritisation in response to the

aforementioned events. The simulations’ results are detailed

below.

As metrics, we measured:

• System utilisation: Ratio of the amount of work pro-

cessed and total computing capacity—number of com-

puting resources;

• Number of violated jobs: Jobs that were completed after

the user needed the results, for the traditional policy, and

jobs that were cancelled because the results were not

ready when necessary, for the context-aware scheduling

policy.

In our analysis we varied the number of resources in the Cloud

infrastructure to evaluate different system loads. We used the

range from 20 to 300 computing resources.

B. Results and Analysis

We start our analysis on the benefits of the context-aware job

scheduling by showing results on system utilisation. Figure 5

presents how the system utilisation varies as a function of the

number of resources and the use of context. When no context

is considered, the system utilisation is inversely proportional

to the increase in number of resources. This happens because

a system with a large number of resources can handle the load

more easily.

When context is used, the system utilisation starts low

and increases steadily with the number of resources until it

reaches a certain threshold where the utilisation is the same

as when no context is used. After this threshold, which in

our case is around 100 resources, both policies present the

same behaviour. This occurs because with few resources, jobs

wait longer to be executed and hence there is not enough

time to complete their execution. If jobs are cancelled when

their results are no longer required, more capacity is released,

resulting in lower utilisation, which is the case of the context-

aware scheduling policy. However, when the system has

more resources, fewer jobs are cancelled and the utilisation

increases. As the number of resources increases, a balance

is established between number of cancelled jobs and system

utilisation. Note that in context-aware scheduling, the jobs are

cancelled when they are violated. The main conclusion for

system utilisation is that context helps by cancelling jobs that

are no longer necessary and filling the system with jobs whose

results are more important to the end-user.

Figure 6 presents results on the number of violated jobs

when varying the number of resources. This metric assesses

the quality of service offered by the Cloud to the end-user. The

results show that more jobs are affected when context is not

used. Under extreme cases of resource scarcity or abundance

(i.e. low or high resource capacity), the average quality of



service offered to the user is the same for both policies, except

under a peaky load where the system is under-utilised. Overall,

the use of context provides better quality of service when

compared to approaches that do not consider context.

20

40

60

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

U
ti
lis

a
ti
o
n
 r

e
d
u
c
ti
o
n
 (

%
)

Distribution ● normal flat peaky

(a) Gain in system utilisation.

0

10

20

30

40

50

● ● ●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

50 100 150 200 250

Resources

Q
o
S

 G
a
in

 (
%

)

Distribution ● normal flat peaky

(b) Gain in Quality of Service.

Fig. 7. Benefits of context-aware job scheduling as a function of load
distribution and number of resources.

The benefits of context-aware job scheduling can be sum-

marised in Figures 7 (a) and (b), which present the system

utilisation reduction and the quality of service (QoS) gains

respectively. The QoS gain can be defined as the difference

between the percentage of violated jobs with and and without

the use of context. It is interesting to note that for both metrics,

the peak load has more benefits compared to the other loads.

This is because the peaky load stresses the system. This is

more clearly noticed for the quality of service metric, where

even when increasing the number of resources in the system,

context-aware scheduling still provides gains when compared

to traditional scheduling. Even when jobs are cancelled by the

system, the average end-user experience is improved because

users will not be notified of completion of jobs whose results

are no longer required.

V. FINAL REMARKS AND FURTHER WORK

This work leverages variations of end-user local context

to optimise the job scheduling in Cloud Computing environ-

ments. The research revolved around the following research

question: How to rationalise the utilisation of Cloud Comput-

ing resource by continuously adapting the execution of jobs in

response to variations of the end-user’s local context?

We developed a model for smarter services that combines

techniques of context awareness and adaptive job scheduling.

The proposed model works by adjusting the priorities of the

server-based jobs in response or pro-actively to variations of

the end-user local context. It aims at providing delay-tolerant

job execution required in mobile environment, while reducing

the resource wastage by properly scheduling jobs in the Cloud.

We analysed the results by demonstrating gains in per-

formance, quality of service, reduction of wasted jobs, and

improvement of overall end-user experience. We considered

workloads that reproduce a simplified societal behaviour. We

created a social simulation for variable number of end-users

during the day in three configurations: (i) flat day, useful to

create a common denominator for a perfect world analysis;

(ii) normal day, which reflects the workload most seen in

commercial production environments, and; (iii) peaky day,

which mirrors tipping workload during working hours. The

objective was to reproduce the Cloud service performance

while handling the workload generated by these three societal

behaviours.

Our main findings are that:

• The impact of applying the proposed method is expressly

relevant in scenarios that involve a large number of

personal assistants merged with highly dynamic environ-

ments. This is the case, in our simulations, of processing

the workload of the “peaky day” scenarios using normal

and busy intra-day configurations.

• The proposed model provides significant positive perfor-

mance impact in situations where the Cloud Computing

service is under intensive resource demand. That is,

by being able to adjust the priority of incoming jobs

in relation to variations of local contexts, the system

improves the overall resource utilisation delivering better

performance and, consequently, better quality of service.

One must bear in mind that the positive results in the Cloud

Computing environment come in exchange to higher resource

utilisation in the mobile application environment. That is, in

order to apply the proposed methods the mobile applications

must be equipped with modules to sense the variations of local

context and continuously communicate with the remote server.

Intuitively, it will imply in more utilisation of communication

channel, processing, and power supply. This situation cannot

be overlooked and must be taken in consideration while

planning for the overall system performance. However, we

claim that advances in mobile computing technology mitigate

this problem and the benefits of the proposed solution are

positive in most of the application scenarios.

Finally, we foresee a number of future developments for the

proposed model. We will be analysing the resource impact of

variations in the simple social simulation, such as alternative

behaviours like users leaving and returning to the in-context

area. Intuitively, we believe this differentiated behaviour will

affect solely the memory resources, but that must be validated

with a new set of simulation configurations. We will also

be improving aspects of the Cloud Computing simulation

by adding new parameters in relation to communication and

memory resource allocation. We intend to extend the Context

Evaluation module to consider different domains of context

evaluation, not considered in this study.



REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Comp. Syst.,
vol. 25, no. 6, pp. 599–616, 2009.

[2] H. P. Borges, J. N. de Souza, B. Schulze, and A. R. Mury, “Automatic
generation of platforms in cloud computing,” in Proceedings of the IEEE

Network Operations and Management Symposium (NOMS’12), 2012,
pp. 1311–1318.

[3] A. K. Dey and G. D. Abowd, “Towards a better understanding of context
and context-awareness,” College of Computing, Georgia Institute of
Technology, Tech. Rep. GIT-GVU-99-22, June 1999.

[4] A. Schmidt, “Ubiquitous computing - computing in context,” Ph.D.
dissertation, Computing Department Lancaster University, UK, Nov
2002.

[5] J. Anhalt, A. Smailagic, D. Siewiorek, F. Gemperle, D. Salber, S. Weber,
J. Beck, and J. Jennings, “Toward context-aware computing: experiences
and lessons,” Intelligent Systems, IEEE, vol. 16, no. 3, pp. 38–46, 2001.

[6] F. Koch and F. Dighum, “Enhanced deliberation behaviour for bdi-
agents in mobile services,” in Proceedings of the 8th International

Conference on Practical Applications of Agents and Multi-Agent Systems

(PAAMS10), Salamanca, May 2010.
[7] C. Graham and J. Kjeldskov, “Indexical representations for context-

aware mobile devices,” in Proceedings IADIS International Conference

on e-Society, 2003, pp. 3–6.
[8] H. J. La and S. D. Kim, “A conceptual framework for provisioning

context-aware mobile cloud services,” in Proceedings of the 2010 IEEE

3rd International Conference on Cloud Computing, ser. CLOUD ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 466–473.

[9] Q. Z. Sheng, B. Benatallah, and Z. Maamar, “User-centric services
provisioning in wireless environments.” Commun. ACM, vol. 51, no. 11,
pp. 130–135, 2008.

[10] H. Song, C. S. Bae, J. W. Lee, and C.-H. Youn, “Utility adaptive
service brokering mechanism for personal cloud service,” in Proceedings

of Military Communications Conference (MILCOM’11), nov. 2011, pp.
1622 –1627.

[11] P. Papakos, L. Capra, and D. S. Rosenblum, “Volare: context-aware
adaptive cloud service discovery for mobile systems,” in Proceedings of

the 9th International Workshop on Adaptive and Reflective Middleware,
ser. ARM ’10. New York, NY, USA: ACM, 2010, pp. 32–38.

[12] F. C. Delicato, I. L. A. Santos, P. F. Pires, A. L. S. Oliveira, T. V. Batista,
and L. Pirmez, “Using aspects and dynamic composition to provide
context-aware adaptation for mobile applications,” in Proceedings of the

ACM Symposium on Applied Computing (SAC’09), 2009, pp. 456–460.

[13] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job
scheduling - a status report,” in Proceedings of the International Work-

shop on Job Scheduling Strategies for Parallel Processing (JSSPP’04),
2004.

[14] A. Takefusa, S. Matsuoka, H. Casanova, and F. Berman, “A study
of deadline scheduling for client-server systems on the computational
grid,” in Proceedings of the IEEE International Symposium on High

Performance Distributed Computing (HPDC’01), 2001.

[15] K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis, “Management of soa-
based context-aware applications hosted in a distributed cloud subject to
percentile constraints,” in Proceedings of the 2011 IEEE International

Conference on Services Computing, ser. SCC ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 88–95.

[16] Y. Xiao, P. Hui, P. Savolainen, and A. Ylä-Jääski, “Cascap: cloud-
assisted context-aware power management for mobile devices,” in
Proceedings of the second international workshop on Mobile cloud

computing and services (MCS’11). New York, NY, USA: ACM, 2011,
pp. 13–18.

[17] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Computer, vol. 43, no. 4,
pp. 51–56, 2010.

[18] B. Y. L. Kimura, H. C. Guardia, and E. dos Santos Moreira, “Disruption-
tolerant sessions for seamless mobility,” in Proceedings of the IEEE

Wireless Communications and Networking Conference (WCNC’12),
2012.

[19] L. Capra, W. Emmerich, and C. Mascolo, “Carisma: Context-aware
reflective middleware system for mobile applications,” IEEE Trans.

Softw. Eng., vol. 29, no. 10, pp. 929–945, Oct. 2003.

[20] J. Simoes, P. Weik, and T. Magedanz, “The human side of the future
internet,” in Future Internet Assembly, 2010, pp. 183–192.


